Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2009

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Tuesday 13 January 2009 1.30 pm to 2.45 pm

For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae book.

Time allowed

1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculater where appropriate.
- A Data and Formulae Book is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Answer all questions in the spaces provided.

1 Figure 1 shows part of an energy level diagram for a hydrogen atom.

Figure 1

1 (a) The level, n = 1, is the ground state of the atom. State the ionisation energy of the atom in eV.

- 1 (b) When an electron of energy 12.1 eV collides with the atom, photons of three different energies are emitted.
- 1 (b) (i) On **Figure 1** show with arrows the transitions responsible for these photons. (3 marks)
- 1 (b) (ii) Calculate the wavelength of the photon with the smallest energy. Give your answer to an appropriate number of significant figures.

9

2		When light of a certain frequency is shone on a particular metal surface, electrons are emitted with a range of kinetic energies.						
2	(a)	 Explain in terms of photons why electrons are released from the metal surface, and why the kinetic energy of the emitted electrons varies upto a maximum value. 						
		The quality of your written communication will be assessed in this question.						
		(6 marks)						
		(* 						

2 (b) The graph below shows how the maximum kinetic energy of the electrons varies with the frequency of the light shining on the metal surface.

2 (b) (i) On the graph mark the *threshold frequency* and label it f_0 .

(1 mark)

2 (b) (ii) On the graph draw a line for a metal which has a higher threshold frequency.

(2 marks)

2 (b) (iii) State what is represented by the gradient of the graph.

(1 m qub)

(1 mark)

2 (c) The threshold frequency of a particular metal surface is 5.6×10^{14} Hz. Calculate the maximum kinetic energy of emitted electrons if the frequency of the light striking the metal surface is double the threshold frequency.

 $answer = \dots \qquad \qquad J$

(3 marks)

13

3 (a) Figure 2 shows the Feynman diagram for a particular interaction.

Figure 2

3	(a)	(i)	State the type of interaction involved and name the exchange particle.
			(2 marks)
3	(a)	(ii)	State two quantities other than energy and momentum, that are conserved in this interaction.

(2 marks)

3 (b) Figure 3 shows the Feynman diagram for another type of interaction.

Figure 3

- 3 (b) (i) Complete the diagram to show the two particles formed in the interaction and the exchange particle. (3 marks)
- 3 (b) (ii) Name the type of interaction responsible for this exchange particle.

	(1 mark)

3 (b) (iii) Energy and momentum are conserved in this interaction.

State **two** other quantities that must be conserved and show that they are conserved in this interaction.

(4 marks)

3 (b) (iv) The exchange particle in this interaction was discovered by experiment with a rest mass that had been predicted. Why is it important to test by experiment the prediction of a scientific theory?

	 	 • • • • •
• • • • • • • • • • • • • • • • • • • •	 •••••	 • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	 • • • • •

(2 marks)

4	(a)	State	State what is meant by the wave-particle duality of electrons.					
			(1 mark)					
4	(b)		trons of wavelength 1.2×10^{-10} m are required to investigate the spacing between es of atoms in a crystal.					
4	(b)	(i)	Calculate the momentum of an electron of this wavelength stating an appropriate unit.					
			momentum of electron =					
			(3 marks)					
4	(b)	(ii)	Calculate the speed of such an electron.					
			speed of electron =					
4	(b)	(iii)	Calculate the kinetic energy of such an electron.					
			kinetic energy of electron =					

8

5	(a)	Som	e materials exhibit the property of <i>superconductivity</i> under certain conditions.
		•	State what is meant by superconductivity. Explain the required conditions for the material to become superconducting.
			(3 marks)
5	(b)	_	re 4 shows the cross-section of a cable consisting of parallel filaments that can be e superconducting, embedded in a cylinder of copper.
			Figure 4 copper cylinder
			filament
5	(b)	(i)	The cross-sectional area of the copper in the cable is $2.28 \times 10^{-7} \text{m}^2$. The resistance of the copper in a 1.0m length of the cable is 0.075Ω . Calculate the resistivity of the copper, stating an appropriate unit.
			answer =(3 marks)
5	(b)	(ii)	State and explain what happens to the resistance of the cable when the embedded filaments of wire are made superconducting.
			(3 marks)

6 Figure 5 shows an arrangement of resistors.

Figure 5

6 (a) Calculate the total resistance between terminals A and B.

answer = Ω (2 marks)

6	(b)	A potential difference is applied between the two terminals, $\bf A$ and $\bf B$, and the power dissipated in each of the 400 Ω resistors is 1.0 W.				
6	(b)	(i)	Calculate the potential difference across the 400Ω resistors.			
			answer =V			
6	(b)	(ii)	Calculate the current through the 25Ω resistor.			
			answer =A			
6	(b)	(iii)	Calculate the potential difference applied to terminals A and B .			
			answer =V			
			(6 marks)			
			Turn over for the next question			

7	A ca	r batte	ery has an <i>emf</i> of 12V and an <i>internal resistance</i> of $5.0 \times 10^{-3} \Omega$.
7	(a)	(i)	Explain what is meant by the emf of the battery.
			(1 mark)
7	(a)	(ii)	Explain what is meant by the internal resistance of the battery.
			(1 mark)
7	(b)	The	battery is used to provide the starting motor of a car with a current of 800 A.
7	(b)	(i)	Calculate the potential difference across the terminals of the battery.
			answer =V
			(2 marks)
7	(b)	(ii)	Calculate the rate of dissipation of energy due to its internal resistance stating an appropriate unit.
			answer =(3 marks)
7	(c)		e and explain the effect of attempting to use a battery with a much higher internal tance to start the car.
			END OF CAMPONOVO
Copyri	ght © 20	09 AQA	END OF QUESTIONS (2 marks) and its licensors. All rights reserved.

9

General Certificate of Education Advanced Subsidiary Examination January 2009

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Data and Formulae Booklet

DATA FUNDAMENTAL CONSTANTS AND VALUES

TOTAL CONSTRUCTION			
Quantity ·	Symbol	Value	· Units
speed of light in vacuo	c	3.00×10^{8}	$m s^{-1}$
permeability of free space	$\mu_{ extsf{o}}$	$4\pi \times 10^{-7}$	$H m^{-1}$
permittivity of free space	$\mathcal{E}_{ m o}$	8.85×10^{-12}	$F m^{-1}$
charge of electron	e	-1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	6.67×10^{-11}	$N\ m^2\ kg^{-2}$
the Avogadro constant	$N_{ m A}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$J K^{-1} mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	$J K^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{\rm e}$	1.76×10^{11}	$\mathrm{C}\ \mathrm{kg}^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3)\times10^{-27}$	kg
proton charge/mass ratio	$e/m_{ m p}$	9.58×10^{7}	$\mathrm{C}\ \mathrm{kg}^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5)\times10^{-27}$	kg
gravitational field strength	g	9.81	$N kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

GEOMETIMENE EQUITIONS		
arc length	$= r\theta$	
circumference of circle	$=2\pi r$	
area of circle	$=\pi r^2$	
surface area of cylinder	$=2\pi rh$	
volume of cylinder	$=\pi r^2h$	
area of sphere	$=4\pi r^2$	
volume of sphere	$=\frac{4}{3}\pi r^3$	

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

class	пате	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	$v_{\rm e}$	0
		v_{μ}	0
	electron	v_{μ} e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	Κ [±]	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number
particles: e^- , v_e ; μ^- , v_μ	+1
antiparticles: $e^+, \overline{\nu_e}$; $\mu^+, \overline{\nu_\mu}$	-1

Photons and Energy Levels

photon energy $E = hf = hc / \lambda$ photoelectricity $hf = \phi + E_{K \text{ (max)}}$ energy levels $hf = E_1 - E_2$ de Broglie Wavelength $\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and $I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$ emf $\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$

resistors in series $R = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

resistivity $\rho = \frac{RA}{L}$

power $P = VI = I^{2}R = \frac{V^{2}}{R}$

alternating current $I_{\text{rms}} = \frac{I_0}{\sqrt{2}}$ $V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$

MECHANICS

moments moment = Fd

velocity and $v = \frac{\Delta s}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$ equations of motion v = u + at $s = \frac{(u + v)}{2}t$

 $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$

force F = ma

work, energy and $W = F s \cos \theta$ power $E_K = \frac{1}{2} m v^2$ $\Delta E_P = mg\Delta h$

 $P = \frac{\Delta W}{\Delta t}, P = Fv$

 $efficiency = \frac{\text{useful output power}}{\text{input power}}$

MATERIALS

density $\rho = \frac{m}{V}$ Hooke's law $F = k \Delta L$

Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$ tensile stress = $\frac{F}{A}$ tensile strain = $\frac{\Delta L}{A}$

energy $E = \frac{1}{2} F \Delta L$ tensile strain

WAVES

wave speed $c = f\lambda$ period $T = \frac{1}{f}$ fringe spacing $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$ grating

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle $\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$